ケトン体:
脂質代謝が過剰なときにアセチル CoA から作られる分子

other_metabolites/ketone_body/ketone_body
ケトン体に関する上位のページです
2018/03/30 更新


  1. 概要: ケトン体とは
    • ケトン体合成の意義
  2. ケトン体の生合成
  3. ケトン体の代謝
    • ケトアシドーシス
  4. ケトン体のその他の生理作用

広告

概要: ケトン体とは

ケトン体 ketone body は、脂肪酸 fatty acid の不完全な酸化によって生じる代謝産物であり、以下の 3 つの分子の総称である (2)。ケトン ketone とは意味が異なるので注意すること。

  • アセト酢酸
  • β-ヒドロキシ酢酸
  • アセトン

「不完全な酸化」とは、たとえば β 酸化 が起こって アセチル CoA が生じても、それが TCA 回路二酸化炭素 まで代謝されないということである。過剰に蓄積したアセチル CoA から合成されるのがケトン体である。


アセト酢酸

β-ヒドロキシ酢酸

アセトン


ケトン体は、以下のような生化学的特徴をもっている。

  • 糖代謝に対して脂質代謝が過剰なときに、肝臓 でアセチル CoA から合成される。
  • をはじめとする様々な組織で、グルコースのかわりのエネルギー源になる。
  • 心筋および腎皮質 renal cortex は、グルコースよりもアセト酢酸を好む (3)。

ケトン体合成の意義

アセチル CoA が過剰になる条件とは、上で述べたように、糖代謝に対して脂質代謝が過剰になる状態である。飢餓が長く続くと、一般には体内の糖質 (グリコーゲン) が先に消費され、ついで脂質が消費される。つまり、飢餓状態でアセチル CoA が過剰になる。

このようなときに、真っ先に問題が生じるのは脳である。脳はグルコースを主要な栄養源としている。したがって、飢餓時には 何か別の栄養源が血液を介して脳に届けられなくてはならない

肝臓で合成されるケトン体は、この役割を担っている。

脂質をそのまま輸送すれば良いという気もするが、これらは 血液脳関門 を通れない。DNA などの ω-3 脂肪酸は通れるという話もあるが、栄養源として量的に十分でないのだろう。

アセチル CoA をそのまま輸送すればいいという気もする。しかし実際にはそのようなメカニズムはない。これは、おそらくアセチル CoA が大きい分子であることによるようなきがする。CoA と書くと小さい分子のようだが、実際に 補酵素 A のページにあるように、これはかなり大きい分子である。


軟骨魚類では、肝臓からの脂質動員 lipid mobilization がケトン体で行われるという報告もあり (1I)、ケトン体の使われ方は生物によって違っているようである。


広告

ケトン体の生合成

生化学の格言 のページにあるように、糖質の代謝に対して脂質代謝が過剰な場合、細胞内でアセチル CoA が余るという現象が生じる。ケトン体は、このような状況で主に 肝臓 において合成される。



  1. 2 分子のアセチル CoA から、アセトアセチル CoA (acetoacetyl CoA) が生じる。触媒する酵素は 3-ketothiolase で、この反応はミトコンドリアで起こる。
  2. さらに 1 分子のアセチル CoA と水が結合し、3-ヒドロキシ-3-メチル-グルタリル CoA (3-hydroxy-3-methylglutaryl CoA, HMG-CoA) が生じる。触媒するのは hydroxymethylglutaryl CoA synthase である。
  3. HMG-CoA から 1 分子のアセチル CoA が外れると、アセト酢酸 acetoacetate が生じる (下の図)。Hydroxymethylglutaryl CoA cleavage enzyme が触媒する。
  4. アセト酢酸は、NADH によって還元されると D-ヒドロキシ酪酸 (D-BHB) になる。アセト酢酸と D-BHB の量比は、ミトコンドリア内の NADH/NAD の比によって決まる。触媒するのは D-3-hydroxybutylate dehydrogenase である。
  5. アセト酢酸は β-ketoacid であるため、ゆっくりと自動的にアセトンに脱炭酸される。血中のアセト酢酸濃度が高いヒトからは、呼気中にアセトンの匂いを嗅ぐことが可能である。


脂肪酸がケトン体合成の主な材料であるが、直接的にはアセチル CoA から合成されるため、ケト原性アミノ酸もケトン体になり得る (4)。


ケトン体の代謝

ケトン体は、脳、神経、腎皮質、筋肉および心筋で利用されるが、肝臓は生産するのみで利用はできない (4)。重量当たりの ATP 生産効率で計算すると、グルコースよりも優れた燃料である。


ケトアシドーシス

アセト酢酸および BHB は であるため、これらが大量に産生されると、血液 の pH が酸性に傾く。これをケトアシドーシスという (4)。

糖尿病 では、インスリン抵抗性のため、組織でグルコースが不足した状態になる。したがって、糖尿病性ケトアシドーシスという病態が存在する。過食の結果である糖尿病と、正反対に見える飢餓がどちらも抹消レベルでの糖質不足をもたらし、ケトアシドーシスを引き起こす点は興味深い (参考: アディポネクチン の進化的意義)。


ケトン体のその他の生理作用

BHB は 脂肪細胞で HCA2 (GRP109A) を活性化し、脂肪分解 lipolysis を抑制する (3)。EC50 は 767 ± 57 µM なので、2 - 3 日の絶食後の血中 BHB 濃度で活性化し得る。


広告

コメント欄

コメントをどうぞ! (500 字まで)


フォーラムを作ったので、各ページにあるコメント欄のうち、コメントがついていないものは順次消していきます。今後はフォーラムをご利用下さい。管理人に直接質問したい場合は、下のバナーからブログへ移動してコメントをお願いします。


References

  1. deRoos (1994). Plasma ketone, glucose, lactate, and alanine levels in the vascular supply to and from the brain oh the spiny dogfish shark (Squalus acanthias). J Exp Zool 268, 354-363.
  2. Lauritzen et al. 2015a (Review). Monocarboxylate transporters in temporal lobe epilepsy: roles of lactate and ketogenic diet. Brain Struct Funct 220, 1-12.
  3. Wanders et al. 2012a.Effects of high fat diet on GPR109A and GPR81 gene expression. Biochem Biophys Res Comn 425, 278-283.
  4. 久富 2004a. ケトアシドーシス. 日内会誌 93, 1506-1512.