SDS-PAGE: 原理、プロトコールなど

experiments/protein/sds-page
2018/10/30 更新


  1. 原理
  2. プロトコール
    • 概要
    • ゲルの作成
    • 電気泳動
    • ゲルの染色
  3. トラブルシューティング

広告

原理

SDS-PAGE とは、ドデシル硫酸ナトリウム (SDS; sodium dodecyl sulfate) および ポリアクリルアミドゲル電気泳動 (PAGE; polyacrylamide gel electrophoresis) を用いて、タンパク質 protein を分子量によって分画する手法である。




CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-O-SO2-ONa

SDS の構造 (3)

以下の 2 点が SDS-PAGE の原理のポイントである。

  1. 常に負の電荷をもつ DNA と異なり、タンパク質の電荷はその種類や溶媒の pH などによって変化する。電気泳動を行うには、何らかの方法でタンパク質全体の電荷を揃える必要がある。SDS-PAGE では、SDS がタンパク質に結合して負電荷を与える。
  2. また、タンパク質はさまざまな高次構造をとる。電気泳動では、ゲルの網目を流れる際の抵抗によってタンパク質をわけるので、分子量が同じでも、球状のタンパク質は早く泳動され、長い紐状のタンパク質はゆっくりと泳動される。そのため、電荷だけでなく高次構造を揃える必要がある。SDS-PAGE では、SDS でタンパク質を変性させ、さらに β-メルカプトエタノールでシステイン cysteine 同士のジスルフィド結合を還元することで、タンパク質を直鎖状にしている。

タンパク質に結合する SDS の量は、ほぼ全てのケースで分子量に比例する(5)。これによって、タンパク質を分子量に応じて分画することが可能になっている。ただし、荷電アミノ酸が多量に含まれていたり、蛋白質がリン酸化などの修飾を受けている場合には、移動度は必ずしも分子量通りにはならない (5)。


> およそ 2 アミノ酸ごとに 1 分子の SDS が結合する (5)。
  • 1 g のポリペプチドに対して、1.4 g の SDS が結合しているという計算になる。

広告

プロトコール

概要

以下、SDS-PAGE の手順を順番に解説する。

  1. ゲルの作成
  2. 電気泳動
  3. ゲルの染色


ゲルの作成

最近では既製品のプレキャストゲルを買うのも一般的だが、自分でゲルを作るときには以下の試薬を用いる。


30% アクリルアミド溶液

アクリルアミドは、ゲルの網目構造を作り出す物質である。

30% アクリルアミド溶液と書かれることがあるが、実際は w/v で 29% のアクリルアミドと 1% の N,N'-bis-アクリルアミドを含む混合液が使われる。これらの濃度は、製品によって異なることがある (5)。 アクリルアミドだけだと直鎖状のポリマーになる が、N,N'-bis-アクリルアミドを加えることで 3 次元の網目構造が作られる。

N,N'-bis-アクリルアミドの割合が高いと、ゲルの pore size が小さくなる。下にあるゲルの濃度とタンパク質量の関係を示した表は 29 : 1 の場合であり (5)、製品によっては再検討が必要である。

  • 15% アクリルアミドゲル: 10 - 43 kDa
  • 12% アクリルアミドゲル: 12 - 60 kDa
  • 10% アクリルアミドゲル: 20 - 80 kDa
  • 7.5% アクリルアミドゲル: 36 - 94 kDa
  • 5.0% アクリルアミドゲル: 57 - 212 kDa

Tris buffer (1.5 M, pH 8.8)

Resolving gel (separating gel) に使う緩衝液。

Tris buffer (1 M, pH 6.8)

Stacking gel に使うバッファー。

SDS-PAGE ゲルには stacking gelresolving gel がある。Stacking gel の役割は以下の通り (5)。

  • pH 6.8 では、泳動バッファー (Tris-HCl, pH 8.3, glycine) に含まれる グリシン の解離度が低く、Cl- よりも遅く泳動される。
  • したがって、電圧をかけると Cl- は泳動の先端に、グリシンは泳動の後端に位置する。
  • イオンが先端および後端に集中するので、その間の領域は電流が流れにくい low conductivity の領域になる。つまり抵抗の大きい領域である。
  • この領域には、たくさんの電圧がかかることになる。オームの法則 E = IR で、I はひと続きのゲルなので一定、R が大きいので必然的に E が大きくなる。
  • SDS と結合したタンパク質の泳動速度は両者の中間であり、この電圧が高い領域に存在する。高電圧なので早く泳動されるが、先行する Cl- に近づくと電圧が下がるので遅くなる。後方からグリシンが近づいてくると、電圧も上がって泳動が早くなる。結果として狭い領域に stack される。
  • これによって、タンパク質は濃縮されて同時に resolving gel に入る。つまり stacking gel を使うことで解像度が大きく上がる。
  • グリシンが pH 8.8 の resolving gel に到達すると、泳動速度は早くなり、ポリペプチドを追い越す。この過程で、ポリペプチドはさらに stack される。

過硫酸アンモニウム: APS

フリーラジカルを発生し、アクリルアミドの重合を促進する。

蒸留水で 10% 溶液を作りストックしておく。1 - 2 週ごとに新しいものを使用する (5)。

TEMED

N,N,N',N'-tetramethylethylenediamine。APS によって作られたフリーラジカルを安定化する試薬。重合を促進する。APS, TEMED ともに重合促進剤と考えるのが妥当である (7)。


具体的なプロトコールは、とりあえず以下のサイトを参照。


電気泳動

一般に stacking gel 中は低電流で泳動し、separating gel に入ったら電流を上げる。私が習ったのは、15 mA - 30 mA ぐらいが普通で、25 mA - 50 mA ぐらいまでなら問題ないという方法だった。

SDS-PAGE の泳動段階でよく議論されるのは、定電流にすべきか、定電圧にすべきか という点である。


ゲルの染色

CBB 染色液

CBB 染色は一般的に用いられるタンパク質の染色法で、検出限界は 10 - 数十ナノグラム 程度である。

一般的なプロトコールは、1 L の CBB 染色液を作るときに

  • CBB R-250: 2.5 g (終濃度 0.25%, w/v)
  • メタノール: 500 mL (50%, v/v)
  • 酢酸: 100 mL (10%, v/v)
  • 蒸留水: 400 mL

である (1)。メタノールは有害なので、これを使わない様々な組成が提唱されている。例えば エタノール とリン酸を使う方法である (2)。1 L 作製するとき、

  • CBB G-250: 0.2 g (0.02%, v/v)
  • 硫化アルミニウム 14-18 水和物: 50 g (5%, w/v)
  • エタノール: 100 mL (10%, v/v)
  • リン酸 orthophosphoric acid (85% 溶液): 23.5 mL (2%, v/v)

CBB 脱色液

一般的な組成は、蒸留水に対してメタノール 5%、酢酸 7% である (いずれも終濃度)。

文献 2 のエタノールを使う方法の組成は以下のとおり。染色液から CBB と硫化アルミニウムを除いているだけである。

  • エタノール: 100 mL (10%, v/v)
  • リン酸 orthophosphoric acid (85% 溶液): 23.5 mL (2%, v/v)


広告

コメント欄

フォーラムを作ったので、各ページにあるコメント欄のうち、コメントがついていないものは順次消していきます。今後はフォーラムをご利用下さい。管理人に直接質問したい場合は、下のバナーからブログへ移動してコメントをお願いします。


References

  1. CBB 染色液の調製, ライフサイエンスプロジェクト. Link.
  2. Dyballa & Metzger 2009a. Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. J Vis Exp 30, e1431.
  3. By - Own work, Public Domain, Link
  4. By Bensaccount at English Wikipedia, CC BY 3.0, Link
  5. Green and Sambrook, 2012a. Molecular cloning: A laboratory manual, 4th edition. Cold Spring Harbor Laboratory Press.


  1. 効率の上がる核酸実験法 第3回 変性ポリアクリルアミドゲル電気泳動 (III). 実験医学 Link.